

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2021

CC10-CHEMISTRY

PHYSICAL CHEMISTRY

Full Marks: 40

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

		Answer any <i>four</i> questions	$10 \times 4 = 40$
1.	(a)	State the Principle of Conductometric Titration.	2
	(b)	Draw and explain the titration curves for:	6
		(i) Strong acid vs Strong Base	
		(ii) Weak acid vs Strong Base	
		(iii)Weak Acid vs Weak Base	
	(c)	Define Cell Constant.	2
2.	(a)	Derive Nernst Equation.	4
	(b)	Discuss the working Principle of Glass Electrode. How is pH of a solution determined using this electrode? What are the advantages and disadvantages of using this electrode?	2+2+2
3.	(a)	What do you mean by Concentration Cells?	2
	(b)	Derive an expression for emf of an electrolyte concentration cell with transport. What is the value of E°_{cell} in these cases?	3+2
	(c)	Calculate the EMF of the Electrode – Concentration Cell:	3
		Pt, $H_2(p_1)$, HCl, $H_2(p_2)$, Pt	
		at 25°C if $p_1 = 600$ Torr and $p_2 = 400$ Torr.	
4.	(a)	Define Standard Electrode Potential.	2
	(b)	How is Equilibrium Constant determined from Standard Electrode Potential?	2
	(c)	What is Liquid Junction Potential? How can it be minimized?	2+1
	(d)	Calculate the Liquid Junction Potential associated with the following Cell:	3
		Ag(s), AgCl(s), HCl(m_1 =1.0; γ_1 =0.809) : HCl (m_2 =0.05; γ_2 =0.830), AgCl(s), Ag	
		Provided the transference number of H^+ is 0.83.	

1

UG/CBCS/B.Sc./Hons./4th Sem./Chemistry/CHEMCC10/2021

5.	(a)	What is the Clausius Mosotti Equation?	4
	(b)	Explain why: Molar Polarizability of CCl_4 is independent of temperature whereas that of $CHCl_3$ changes with temperature.	3
	(c)	Calculate the dipole moment of m-dichlorobenzene, provided the dipole moment of chloro benzene is 1.55 D.	3
6.		Explain why:	
	(a)	Specific conductance decreases while Equivalent Conductance increases with dilution.	3
	(b)	H^+ and OH^- in aqueous media have exceptionally high ionic conductance.	3
	(c)	A DC current cannot be used in Conductometric Measurements.	2
	(d)	Molar Conductance values for alkali metal cations are in the order of:	2
		$Rb^+ > K^+ > Na^+ > Li^+$	
7.	(a)	What is Transport Number?	2
	(b)	Under what conditions an aqueous solution of CdI_2 shows negative transport Number of Cd^{2+} ions?	2
	(c)	State and explain Kohlrausch's Law of independent Migration of ions.	3
	(d)	The Molar Conductance of aqueous Sodium Acetate, Hydrochloric acid and Sodium Chloride at infinite dilution are 0.0091 Sm^2/mol , 0.0425 Sm^2/mol , 0.01281 Sm^2/mol respectively. Calculate the Molar Conductance of Acetic acid at infinite dilution.	3
8	(a)	Write short notes on: Asymmetry Effect and Electrophoretic Effect	6
	(b)	What is Walden's Rule?	4

____X____